首页> 外文OA文献 >The Fourier-Stieltjes and Fourier algebras for locally compact groupoids
【2h】

The Fourier-Stieltjes and Fourier algebras for locally compact groupoids

机译:Fourier-stieltjes和Fourier代数用于局部紧致群体

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Fourier-Stieltjes and Fourier algebras B(G), A(G) for a general locallycompact group G, first studied by P. Eymard, have played an important role inharmonic analysis and in the study of operator algebras generated by G.Recently, there has been interest in developing versions of these algebras forlocally compact groupoids, justification being that, just as in the group case,the algebras should play a useful role in the study of groupoid operatoralgebras. Versions of these algebras for the locally compact groupoid caseappear in three related theories: (1) a measured groupoid theory (J. Renault),(2) a Borel theory (A. Ramsay and M. Walter), and (3) a continuous theory (A.Paterson). The present paper is expository in character. For motivationalreasons, it starts with a description of the theory of B(G), A(G) in thelocally compact group case, before discussing these three realted theories.Some open questions are also raised.
机译:由P.Eymard首次研究的一般局部紧致群G的Fourier-Stieltjes和Fourier代数B(G),A(G)在谐波分析和G生成的算子代数的研究中发挥了重要作用。人们有兴趣为局部紧致的类群定理开发这些代数的版本,理由是,就像在组情况下一样,代数应该在类群算子代数的研究中发挥有用的作用。这些代数的局部紧实群态的形式出现在三个相关的理论中:(1)测量群态理论(J. Renault),(2)Borel理论(A. Ramsay和M. Walter),以及(3)连续理论(A.Paterson)。本文的性质是说明性的。对于动机原因,在讨论这三种现实的理论之前,先从描述局部紧致群体情况下的B(G),A(G)的理论入手。还提出了一些未解决的问题。

著录项

  • 作者

    Paterson, Alan L. T.;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号